A typical business vision in healthcare is to bring innovative treatments to patients with unmet-needs faster. Augmenting human expertise can ensure that only candidates and clinical programs with the highest likelihood of success are pursued – saving time, resources and reducing costs.

We’ve created a suite of products to accelerate innovation by addressing high-value questions for stakeholders in portfolio strategy, R&D, therapeutic programs, business development and licensing, M&A, clinical operations, and competitive/business intelligence

The AlphaMeldTM suite of products impacts the entire process of drug discovery and development ensuring

  • Emerging technologies and targets can be identified
  • Only candidates with the strongest connections between target-drug-disease are prioritized with the highest translational potential
  • Prioritization of a clinical pipeline based on probability of success and failure
  • Parked assets are leveraged into new disease indications or evaluated as potential combination therapies
  • Optimal investment allocation for internal programs for portfolio strategy
  • The competitive landscape is monitored so that all opportunities and threats are recognized
  • Patient recruitment and sites for clinical trials are optimized for the disease indication
Responsive image

Opportunity

In the drug development process standard estimates for overall probability of clinical success remains low at about 10%. Deploying a machine-based artificial intelligence approach to digest diverse datasets and amplify patterns of successful clinical innovation is key to enabling the smart allocation of investments and making high value portfolio decisions. This is typically done through internal development initiatives or strategic acquisition or in-licensing of external assets.

Responsive image

Strategic portfolio augmentation with high value clinical assets that have a high likelihood of success

Large Pharma spin-out

Licensing and M&A Group

Responsive image

Solution

RxMeldTM identified a landscape of 50 disease indications in non-malignant blood disorders with an association of more than 300 drugs taking into account over 2 million data points. RxMeld’s machine learning algorithms amplified the signals of success for clinical innovation in each disease indication’s drug pipeline and narrowed the asset landscape to 67 drugs that were amenable to human expert intervention. The iterative process resulted in the identification of 10 highly actionable assets with a probability of clinical success greater than 80%. We successfully concluded the collaboration rapidly building scale and efficiency to augment human expertise.

Building efficiency and focus in the business development due diligence process through AI-powered automation. The existing process involved deep human intervention and time-consuming processes for evaluating thousands of in-licensing opportunities to identify assets for deeper analysis.

Large Pharma

BD

Responsive image

Solution

For every opportunity received by the Pharma collaborator, RxMeldTM provided a competitive snapshot for each asset, its probability of clinical success and a comparative list of alternative assets (if any) in the same disease indication. This AI-powered evaluation allowed the search and evaluation teams to focus and prioritize organizational resources for conducting in depth analysis on high value assets.

To identify the next breakthrough innovations for novel targets/mechanism of action and technologies to transform fibrosis management and treatment. Early innovation is a noise-ridden space with data inundation from basic to applied research yielding more than 5,000 published papers a day. Evaluation of cross industry technologies and possible adaptability to healthcare is also imperative in identifying relevant signals of innovation. This presents a unique challenge for human experts to effectively manage and leverage. An AI- and ML-based approach can rapidly identify patterns of innovation and amplify human expertise to ensure that signals of innovation are not lost in translation.

Top 10 Large Pharma

R&D and Discovery teams

Responsive image

Solution

EIMeldTM identified associations between targets and pathways relevant to fibrosis. Machine learning algorithms amplified the targets with established functional evidence and novelty. EIMeldTM triangulated these signals with associated KOL support, innovation hubs, grants, patent activity, and deal activity. This resulted in the identification of novel targets for further evaluation through academic collaborations.

The high drug development attrition rate occurs for many reasons including unanticipated pharmacology and unknown biology. Scientific discovery requires an understanding of the relationships between disease pathways and potential drug targets. Mapping these relationships is often a manual effort drawing upon various data sources, limiting the possibilities that scientists can explore. Once a hypothesis about a new target or relationship is formulated, manual data curation and review is often required to validate a new theory.

Top 10 Pharma

R&D, Discovery teams

Responsive image

Solution

TargetMeldTM provided exhaustive measures to comprehensively make meaningful connections between targets, pharmacology, and disease pathologies to increase the probability of clinical success. Based on the quality and quantity of evidence, TargetMeldTM rapidly shortlisted clinical, pre-clinical and in-vivo targets and, through manual curation, identified actionable target product profiles.

As organizations strive to remain pioneers in their respective fields, a thorough understanding of the commercial, clinical, and financial landscape is key to continued success. Competitive benchmarking should allow for an objective analysis of actionable intelligence about competitor objectives, strategies, capabilities, and emerging innovation. It can also provide a clear understanding on an unmet need and opportunity for growth. CIMeldTM enables AI- and ML-driven signal triangulation to identify threats and opportunities based on disease indication, clinical phase, gene, and target. CIMeldTM is tailored to fit the needs of an organization to help decision makers keep a finger on the pulse of important breakthroughs, developments and events in a market of interest. With a multitude of moving parts AI-driven signal triangulation of structured and unstructured data sources ensures that no stone is left unturned when looking to execute on high value investment strategies.

Top 10 Pharma

Licensing and M&A

Responsive image

Solution

CIMeldTM provided critical competitive information for portfolio strategy, taking into account commercial, clinical, and financial insights, and was able to identify multiple opportunities and threats. It also provided a first mover advantage in identifying opportunities for in-licensing as well as M&A.

The high failure rate of clinical trials has significant impact on providing much needed treatments to patients with an unmet need. As a result, drug development costs remain high and compounds are more likely to demonstrate lack of efficacy for reasons beyond just the mechanism of action. Patient enrollment and protocol adherence as well as competition among sites to enroll eligible subjects also contribute to failure rates. The massive accumulation of data and other associated information remains cumbersome to manage and may also contain nuggets of valuable data that are impossible to extract given the finite resources available for any given trial. CliniMeldTM utilizes AI's transformative power to enhance the clinical trial planning process and operational execution.

Biopharmaceutical companies, CROs, Project management, Clinical development teams